Cell-Chip

The counting chamber looks like the familiar Neubauer "improved" hemocytometer: The cells are distributed over 3×3 large squares, each with 1 mm edge length and with a surface area of 1 mm^2 .

Count your cells as usual - With the Cell-Chip, you inject the sample, stained or unstained, into the desired chamber. Two separate counting chambers enable two counts per Cell-Chip.

Quick, easy and safe:

- Minimal counting tolerances
- High precision
- minimized risk of infection
- easy to recycle
- sterile, single wrapped

Product	Cat. No.	Dimensions	Volume	Depth of chamber	Pieces/ sterile unit	Pieces/ Box
Cell-Chip with counting grid Neubauer "improved" Individually packaged	505050	25x75x1.6 mm	10 µl	0.1 mm	1 Chip (for 2 counts)	50 Chips

Useful products by Seraglob

Our label Seraglob provides scientists all over the world with first class serum, medium, reagents and additives.

Find more products and services at seraglob.com

Trypan Blue

Stain your cells with a colorant to facilitate counting

Cat. No. L 2001 Volume 100 ml

More at seraglob.com/additives

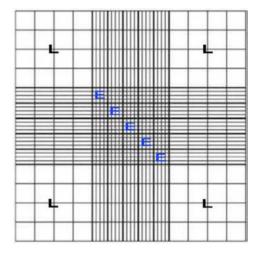
Fetal Bovine / Calf Serum

High quality serum to give your cells a head start

Cat. No. S 40500 Volume 500 ml

More at seraglob.com/sera

Details & Instructions


Structure of the "improved" counting chamber

The counting chamber consists of 9 large squares (3x3), of which 4 are corner squares (L). The corner squares (L) are divided into 16 squares (4x4). The central square is divided into 5x5 squares (E) that are divided into 4x4.

Volume details for the L-squares

The area of the L-squares results from the edge lengths: $1 \text{ mm } \times 1 \text{ mm} = 1 \text{ mm}^2$.

At a chamber depth of 0.1 mm this results in a volume of 0.1 mm 3 in the L-squares (conversion: 0.1 mm 3 correspond to 0.1 μ l or 10 $^{-4}$ ml.)

Counting with the Cell-Chip

Leukocyte counting (1:20 dilution) Amount of Leukocytes leukocytes per ml = 1. Dilute blood using accepted laboratory methods 2. Load 10 µl of diluted sample into the sample injection (cells in 4 corner squares/ 4) x 20 (dilution factor) 3. Count the erythrocytes in the 5 small squares (four small corner squares and one small middle square) of x 10⁴ (volume factor) the large center square Mammalian Cell counting Amount of Mammalian Cells 1. Treat the cell samples with Trypsin-EDTA. mammalian cells per ml = 2. Carefully remove the supernatant with a pipette tip without disturbing the pellet (cells in 5 large squares/5) 3. Add an appropriate volume of growth media or PBS to x dilution factor dilute to a final concentration of 5x103 cells/ml to 5x106 x 10⁴ (volume factor) cells per ml 4. Thoroughly resuspend the cell pellet with a pipette 5. Check visually if there are any cell clumps or agglomerates 6. Load 10 µl of sample into the sample injection area 7. Count the cells in 5 large squares Erythrocyte counting (1:200 dilution) Amount of Erythrocytes 1. Dilute blood using accepted laboratory methods erythrocytes per ml = 2. Load 10 µl of diluted sample into the sample injection cells in 5 small squares x 5 3. Count the erythrocytes in the 5 small squares (four x 200 (dilution factor)

the large center square

small corner squares and one small middle square) of

x 10⁴ (volume factor)